SCHEME OF COURSE WORK

Course Details:

Course Title	CHEMISTRY LA	AB					
Course Code	: 20BC1104		L T	P C	0 0 3 1.5		
Program:	: B.Tech.						
Specialization:	: CIVIL ENGINEI	: CIVIL ENGINEERING					
Semester	:1						
Prerequisites	:Fundamentals of chemistry						
Courses to which it is a prerequisite		For Civil & Mechai	nical Eng	gineerin	g		

Course Outcomes (COs): After the completion of the Course the student shall be able to:

CO No.	Course outcomes
CO1	Determine the quality of the ground water sample (L3).
CO2	Determine the metal content in different ores and cement (L3).
CO3	Explain the functioning of the instruments like pH metry, Conductometry and
	Potentiometry (L2).
CO4	Determine the physical properties like surface tension and viscosity (L3).
CO5	Use spectrophotometry to determine the metal ions (L3).

Program Outcomes (POs):

A graduate of Civil engineering will be able to

1. Graduates will be able to apply the knowledge of mathematics, science, engineering fundamentals to solve complex civil engineering problems.

2. Graduates will attain the capability to identify, formulate and analyse problems related to civil engineering and substantiate the conclusions

3. Graduates will be in a position to design solutions for civil engineering problems and design system components and processes that meet the specified needs with appropriate consideration to public health and safety.

4. Graduates will be able to perform analysis and interpretation of data by using research methods such as design of experiments to synthesize the information and to provide valid conclusions.

5. Graduates will be able to select and apply appropriate techniques from the available resources and modern civil engineering and software tools, and will be able to predict and model complex engineering activities with an understanding of the practical limitations.

6. Graduates will be able to carry out their professional practice in civil engineering by appropriately considering and weighing the issues related to society and culture and the consequent responsibilities.

7. Graduates will be able to understand the impact of the professional engineering solutions on environmental safety and legal issues.

8. Graduates will transform into responsible citizens by resorting to professional ethics and norms of the engineering practice.

9. Graduates will be able to function effectively in individual capacity as well as a member in diverse teams and in multidisciplinary streams.

10. Graduates will be able to communicate fluently on complex engineering activities with the engineering community and society, and will be able to prepare reports and make presentations effectively.

11. Graduates will be able to demonstrate knowledge and understanding of the engineering and management principles and apply the same while managing projects in multidisciplinary environments.

12. Graduates will engage themselves in independent and life-long learning in the broadest context of technological change while continuing professional practice in their specialized areas of civil engineering.

PROGRAMME SPECIFIC OUTCOMES(PSOs):

1. Collect, process and analyse the data from topographic surveys, remote sensing, hydrogeological investigations, geotechnical explorations, and integrate the data for planning of civil engineering infrastructure.

2. Analyse and design of substructures and superstructure for buildings, bridges, irrigation structures and pavements.

3. Estimate, cost evaluation, execution and management of civil engineering projects.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO-1	3	2	2	-	-	-	-	-	-	-	-	2
CO-2	3	2	2	-	-	-	-	-	-	-	-	2
CO-3	3	2	-	-	-	-	-	-	-	-	-	-
CO-4	2	2	-	-	-	-	-	-	-	-	-	-
CO-5	3	2	-	-	-	-	-	-	-	-	-	-

Course Outcome versus Program Outcomes:

Mapping Levels:

1: Slight (Low), 2: Moderate (Medium), 3: Substantial (High), put -: No Correlation

Course outcomes vs Program Specific Outcomes

COs	PSO1	PSO2	PSO3
CO-1	-	-	-
CO-2	-	-	-
CO-3	-	-	-
CO-4	-	-	-
CO-5	-	-	-

Assessment	Day to Day assessment / Mid-Test / End Exam
Methods:	Day to Day assessment / Wild-Test / End Exam

Course Outcome-Assessment

Week	TOPIC / CONTENTS	Course Outcomes	Sample questions	TEACHING- LEARNING STRATEGY	Assessment Method & Schedule
1	Determination of total hardness of a ground water sample	CO 1	Q)Determine the total hardness of given 100 ml water sample	Experiment	Evaluation by checking observation and
2	Determination of copper in copper ore	CO 2	Q) Determine the amount of copper present in given copper ore	Experiment	record
3	Determination of active chlorine content in bleaching powder	CO 1	Q) Determine the active chlorine present in given bleaching powder solution	Experiment	
4	Determination of chromium (VI) by hypo	CO 2	Q) Determine the amount of Cr present in given dichromate sample solution	Experiment	Day to DayEvaluation(10M)Experment-4MRecord-2M
5	Determination of iron(II) in an iron ore sample	CO 2	Q) Determine the amount iron present in given iron ore sample	Experiment	Result-2M Viva-2M
6	Determination of sulphuric acid in lead- acid storage cell	CO 2	Q) Determine the strength of sulphuric acid in lead-acid storage cell	Experiment	
7		MID TEST (20M) Procedure-5M Experiment-5M Result-5M Viva-5M			

8	Determination of strength of an acid by pH metric method	CO 3	Q) Determine the strength of an acid by pH metric method	Experiment	Evaluation by checking observation and record
9	Determination of citric acid in a citrus fruit by conductometric method	CO 3	Q) Determine the strength of citric acid by pH metric method	Experiment	Day to Day Evaluation(10M) Experment-4M
10	Determination of surface tension of a liquid	CO 4	Q) Determine the surface tension of given liquid	Experiment	Record-2M Result-2M Viva-2M
11	Determination of viscosity of a liquid	CO 4	Q) Determine the viscosity of given liquid	Experiment	
12	Determination of Fe(III) by spectrophotometry	CO 5	Q) Determine the amount of Fe(III) present in given cement sample by spectrophotometric method	Experiment	
13	Determination of Flash and Fire points of a lubricant	CO 4	Q) Determine the Flash point and Fire point of given lubricating oil	Experiment	
14		MID TEST (20M) Procedure-5M Experiment-5M Result-5M Viva-5M			